a2 United States Patent

McGrath et al.

US009405593B2

US 9,405,593 B2
*Aug. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

SCALING OF APPLICATION RESOURCES IN
A MULTI-TENANT
PLATFORM-AS-A-SERVICE ENVIRONMENT
IN A CLOUD COMPUTING SYSTEM

Applicant: Red Hat, Inc., Raleigh, NC (US)

Inventors: Michael P. McGrath, Schaumburg, 1L
(US); Matthew Hicks, Westford, MA

(US)

Assignee: Red Hat, Inc., Raleigh, NC (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/617,122

Filed: Feb. 9,2015

Prior Publication Data
US 2015/0154057 A1l Jun. 4, 2015

Related U.S. Application Data

Continuation of application No. 13/605,563, filed on
Sep. 6, 2012, now Pat. No. 8,978,035.

Int. Cl1.

GO6F 9/50 (2006.01)

GO6F 9/455 (2006.01)

U.S. CL

CPC ... GO6F 9/5083 (2013.01); GO6F 9/45533

(2013.01); GOGF 9/5072 (2013.01); GO6F
9/5077 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,009,452 A 12/1999 Horvitz
7,774,761 B2 8/2010 Vohra
7,853,708 B2 12/2010 Townsley et al.
8,335,851 Bl 12/2012 Vendrow
8,352,941 Bl 1/2013 Protopopov et al.
8,424,059 B2 4/2013 Kwok et al.
8,429,659 B2 4/2013 Bartfai-Walcott et al.
8,484,639 B2 7/2013 Huang et al.
8,484,654 B2 7/2013 Graham et al.
8,505,006 Bl 8/2013 Larkin et al.
8,601,483 B2 12/2013 Heetal.
8,635,351 B2 1/2014 Astete et al.
8,706,772 B2 4/2014 Hartig et al.
8,707,322 B2 4/2014 Graham et al.
8,769,531 B2 7/2014 Anderson et al.
8,826,274 B2 9/2014 Moriki et al.
8,839,263 B2 9/2014 Sugai
(Continued)
OTHER PUBLICATIONS

USPTO, Office Action for U.S. Appl. No. 13/605,563, mailed Jul. 24,
2014.

(Continued)

Primary Examiner — Qing Wu
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(57) ABSTRACT

Implementations provide for scaling of application resources
in a multi-tenant Platform-as-a-Service (PaaS) environment
in a cloud computing system. A method of the disclosure
includes monitoring a load measurement of containers asso-
ciated with an application executed on virtual machines
(VMs) in a multi-tenant PaaS system, comparing the load
measurement with a criteria, and when the load measurement
exceeds the criteria, causing resources to be added to execute
functionality of the application in the VMs ofthe multi-tenant
PaaS system.

20 Claims, 7 Drawing Sheets

%

Receive load capacity data for load balanced containers

l

Monitor overall load measurement of load balanced containers

Overall load
easurement exceed a maximui
threshold load amount?

Interact with server orchestration system to add resources to the application

l

Sync application content to the added resources and Initiallze added resources ‘
250

US 9,405,593 B2
Page 2

(56)

8,843,924

8,850,432

8,850,514
2002/0091753
2007/0128899
2008/0163004
2008/0320474
2009/0313374
2009/0313620
2010/0122343
2010/0138830
2010/0153951
2010/0275241
2011/0055310
2011/0239215
2011/0246617
2011/0252320
2011/0252420
2011/0258621
2011/0276584
2011/0277027
2011/0302415
2012/0011077
2012/0096165
2012/0173581
2012/0215919
2013/0007239
2013/0055243
2013/0179895
2013/0227560
2013/0227561
2013/0227563
2013/0227635
2013/0297672
2013/0297673
2013/0297685
2013/0297795
2013/0298183
2013/0326506
2013/0326507
2014/0040883
2014/0068611

U.S. PATENT DOCUMENTS

References Cited

B2 9/2014 Dow et al.
B2 9/2014 McGrath et al.
B2 9/2014 McGrath et al.
Al 7/2002 Reddy et al.
Al 6/2007 Mayer
Al 7/2008 Yu
Al 12/2008 Jelinek et al.
Al 12/2009 Murphy et al.
Al 12/2009 Sedukhin et al.
Al 5/2010 Ghosh et al.
Al 6/2010 Astete et al.
Al 6/2010 Jones
Al 10/2010 Srinivasan
Al 3/2011 Shavlik et al.
Al 9/2011 Sugai
Al 10/2011 Sheehan et al.
Al 10/2011 Arrasvuori et al.
Al 10/2011 Tung et al.
Al 10/2011 Kern
Al 112011 Cotner et al.
Al 11/2011 Hayton et al.
Al 12/2011 Ahmad et al.
Al 1/2012 Bhagat
Al 4/2012 Madduri et al.
Al 7/2012 Hartig et al.
Al 8/2012 Labat et al.
Al 1/2013 Agarwal et al.
Al 2/2013 Dandekar et al.
Al 7/2013 Calder et al.
Al 8/2013 McGrath et al.
Al 8/2013 Walsh et al.
Al 8/2013 McGrath et al.
Al 8/2013 Walsh et al.
Al 112013 McGrath et al.
Al 112013 McGrath et al.
Al 112013 McGrath et al.
Al 112013 McGrath et al.
Al 112013 McGrath et al.
Al 12/2013 McGrath et al.
Al 12/2013 McGrath et al.
Al 2/2014 Tompkins
Al 3/2014 McGrath et al.
OTHER PUBLICATIONS

USPTO, Notice of Allowance for U.S. Appl. No. 13/605,563, mailed
Nov. 7,2014.

Rosen, Rami, “OpenSolaris Overview lecture”, http://www.haifux.
org/lectures/160/solLec.pdf, 80 pages, Feb. 2007.

User’s Guide, “Parallels Virtuozzo Containers for Windows”, Ver-
sion 4.0, copyright 1999-2008 Parallels Software International Inc;
http://www.apptix.com/support/mailstreet/vps/LinkVPS__
Virtuozzo .pdf, 336 pages.

Stackoverllow, “How to scale Docker containers in production”,
http://stackoverflow.com/questions/18285212/how-to-scale-
docker-containers-in-production; [retrieved from the Internet on:
Feb. 3, 2015], 4 pages.

The Authoritative Dictionary of IEEE Standards Terms. 2000, Stan-
dards Information Network IEEE Press. seventh edition. p. 131 and
530.

Linux man page pam_namespace; htt://web.archive.org/web/
20081014010639/http://linux.die.net/man/8/pam__nampespace;
Oct. 14, 2008.

Loscocco et al. Meeting Critical Security Objectives with Security-
Enhanced Linux. 2001. NSA. pp. 1-11.

Morris, James. File System Labeling in SELinux. 2004. RedHat. pp.
1-8.

Red Hat Inc., Red Hat Enterpise Linux 5 Deployment guide,
“Deployment, configuration and administration of Red Hat Enter-
prise Linux 57, Chapter 46—Security and SELinux, pp. 823-848, 26
pages, Jul. 21, 2011.

Smalley, Stephen D. SELinux. 2001.NSA. pp. 1-23.

Unix man unshare clone Janak Desai, Jan. 11, 2006; pp. 1-5.

Wiki LXC; http://web.archive.org/web/20120130164103/http://en.
wikipedia.org/wiki/LXC; Jan. 30, 2012.

Maoke Chen and Akihiro Nakao, “Feather-Weight Network
Namespace Isolation Baased on User-Specific Addressing and Rout-
ing in Commodity OS,” T. Magedanz et al. (EDS.): TridentCom
2010, LNICST 46, pp. 53-68, 2011.

An Quin et al., “Xconveryer: Guarantee Hadoop Throughput via
Lightweight OS-level Virtualization,” 2009 Eighth International
Conference on Grid and Cooperative Computing, IEEE 2009, pp.
299-304.

Anup K. Ghosh and Angelos Stavrou, “DARPA Mobivisor: An
Architecture for High Assurance for Untrusted Applications on Wire-
less Handheld Devices via Lightweight Virtualization,” Nov. 2010,
28 pages.

Corcoran et al. Cross-Tier, Label-based Secuirty Enforcement for
Web Applications. 2009. ACM. pp. 269-281.

Planky, “Cloud Virtual Networks: PaaS and IaaS approaches”, pp.
1.2.,Mar. 27, 2011.

US 9,405,593 B2

Sheet 1 of 7

Aug. 2,2016

U.S. Patent

L 8unbi4

gzl
B LR

FAF

HIFMOHT

™ wasmoua

b EW3MED F LMD

aar
HITTOMLNCO ,_
Ao an

S s
\\) S
Vs
- /'
1 Dﬁjﬁoz MO.EQOU AIINOSAY W A\
orl
I[[ONUO)) IAPIA0I] SR
ya

L s e 2 P

L

E s T

R A

T
HEOsAL T S

o

iy
..v.,.v\ .,m.x

5 Ly

e, e

on

HHaodd Q0005

Fl
PELIZAS

M LS0H

a e

127
b,

S Ypen
;
;
:

DEL ANOTED = ™ en ™

P,

i 5 a™

US 9,405,593 B2

Sheet 2 of 7

Aug. 2, 2016

U.S. Patent

0rc
a7

26€T
¢ ddy

(V74
a1

qs¢T
7z ddy

LET AIRIQI]
a3pue)

ICET PON

Z 2inbiy4

26T
¢ ddy

BSET
[ddy

LET Arelqr]
28pue)

qCTeT 3PON

q6¢T
7 ddy

0rC
a1
vGET
| ddy

LET Areiqry
3pune)

BT APON

¥TT
DIAIIG
UOTIROLIUSYINY

8TC
aseqeieg
/101§ BIRQ

<Ic
waISAS

JUWIGRUBN
9po)) 22.N0S

AN

97T
WAISAS e
uonRNSIYIID) 01d
IDAIRS
0ZZ 12AeT 1avoig

ric
S[00], PUBIIO,)

01T 19Ke Jua1[)

0§77 19K 9pON

x

(=
[=
N

US 9,405,593 B2

Sheet 3 of 7

Aug. 2, 2016

U.S. Patent

¢ aunbiy4
HEEEE
_ | apLe) g1
== _ CEE JouIBUO)) I3duR[RY _
| [] o | P50 o] | | | o 1 wommonuay
adpupe) i 0€E soupsuy a8pmie) _ _
_ CZ¢ Iaureuo) 8Bpue) _ 0¢¢ 2ouelsuy | | DEE doueISUT
_ DE¢ Qoumsy| _ oBpLie) o5pLLE) _
0¢t a8puie)) _ CZ¢ Joumuo)
| SBpLne) €11 _ _
0Lt — 0€¢ doueisu — I
oouelsul AZPLIIE) St owm_octmo : _ _ (€e Poumsuy | | HLE Soursuf _
_ IOUIRIIIO)) IoouReg : _ oSpLyre) o8pinIe)
_ g Jeurejuo)) peoT 7 uonesrddy TZE Ioureuo)) _ TZT JouRuo)) _
$0¢ ¢ uoneonddy _ L S0¢€ 1 voneorddy |
—_ e M] _—— ——_——
0z [ESRLCAT R EITINS 0zc 0TE wafy WSk
Areiqr] o8pupe) UOnNENSIYIAIQ AT Kreaqi 28pue) UOTJRI)SOTDI() IIAIIG
gIe 953
S0 SO
TECT(WA) TAPON TEC (NA) T 9PON
0SE /MpoN
\\ [O13UO)) I2INOSIY
ad.n g7 (10301g) WOISAS UOIBRISIYDI(JOAIDS

US 9,405,593 B2

Sheet 4 of 7

Aug. 2, 2016

U.S. Patent

¥ 24nbi4
L [
| | set _
Yy — _ (s)1oureluo) g1
(s)loureuo) g1 _ _
| I
— — | | 43 443 _
543 543 SI0UTBIUO)) SISUIBIUO))
SIOUIRIUO)) SIJUTBJUO)) _ _ _
— — _ €T NPPON TET € 9PON _
CEC N PPON €T € 9PON _ _ _
p— p— _ 339
%3 453 _ Jourejuo) g7 _
I8UTRIUOY) g Ipureyuo)) g7 _
— — _ 543 e |
[543 [543 _ SIDUTRIUOD) SISUTRIUO))
SISUTRIUO)) SI9UTRIIO)) _ _
__ __ _ | TETTOPON TET 1 9poN
TEC TOPON €2 | 9PoN | _
0Th TPMsIa N _ 0T 1 RmsIq _
—_) — — — — —_— S —
0S¢ 2Mpo
JOIUOY) 39IN0SAY .
97¢ (Jo7org) WoIsAS UONENSOYII() JOAIDS R 7117

U.S. Patent Aug. 2, 2016 Sheet 5 of 7 US 9,405,593 B2

Receive load capacity data for load balanced containers

O
—
o

\

Monitor overall load measurement of load balanced containers

cn
N
(=)

4

Overall load
easurement exceed a maximum
threshold load amount?

530

NO

Interact with server orchestration system to add resources to the application
540

\

Sync application content to the added resources and initialize added resources
530

Figure 5

U.S. Patent Aug. 2, 2016 Sheet 6 of 7 US 9,405,593 B2

Receive load capacity data for load balanced containers

Monitor overall load measurement of load balanced containers

620

Overall load
measurement below a minimum NO
threshold load amount?

630

Thrashing NO
protection(s) satisfied?
640

Interact with server orchestration system to remove resources from the
application

650

Figure 6

U.S. Patent Aug. 2, 2016 Sheet 7 of 7 US 9,405,593 B2

700
N\ ~

102 10
PROCESSOR
-t »| VIDEO DISPLAY
PROCESSING LOGIC / 726
Resource Control | 4
Module ~—708
L~ 704 ALPHA-NUMERIC
INPUT DEVICE
MAIN MEMORY
INSTRUCTIONS
Resource Control > > — 714
Module Ne 72
350 6
CURSOR
——————— CONTROL
V- 706 DEVICE
% 718
STATIC MEMORY |jt——— /
DATA STORAGE DEVICE
12 MACHINE-READABLE | | .,
MEDIUM T
NETWORK ——
INTERFACE |¢4—p SOFTWARE /726
DEVICE Resource Control Py
Module
350
S 720
774 SIGNAL
-4— | GENERATION
DEVICE

FIGURE 7

US 9,405,593 B2

1
SCALING OF APPLICATION RESOURCES IN
A MULTI-TENANT
PLATFORM-AS-A-SERVICE ENVIRONMENT
IN A CLOUD COMPUTING SYSTEM

RELATED APPLICATION

This application is a continuation of and claims the benefit
under 35 U.S.C. §120 of U.S. patent application Ser. No.
13/605,563, filed on Sep. 6, 2012, and issued as a U.S. Pat.
No. 8,978,035 on Mar. 10, 2015, the entirety of which is
incorporated herein by reference.

TECHNICAL FIELD

The embodiments of the invention relate generally to plat-
form-as-a-service (PaaS) environments and, more specifi-
cally, relate to scaling of application resources in a multi-
tenant PaaS environment in a cloud computing system.

BACKGROUND

Cloud computing is a computing paradigm in which a
customer pays a “cloud provider” to execute a program on
computer hardware owned and/or controlled by the cloud
provider. It is common for cloud providers to make virtual
machines hosted on its computer hardware available to cus-
tomers for this purpose. The cloud provider typically pro-
vides an interface that a customer can use to requisition vir-
tual machines and associated resources such as processors,
storage, and network services, etc., as well as an interface a
customer can use to install and execute the customer’s pro-
gram on the virtual machines that the customer requisitions,
together with additional software on which the customer’s
program depends. For some such programs, this additional
software can include software components, such as a kernel
and an operating system. Customers that have installed and
are executing their programs “in the cloud” typically commu-
nicate with the executing program from remote geographic
locations using Internet protocols.

For programs that are web applications, the additional soft-
ware can further include such software components as
middleware and a framework. Web applications are programs
that receive and act on requests in web or other Internet
protocols, such as Hypertext Transfer Protocol (HTTP). It is
common for a user to use a web application by using a
browser executing on the user’s client computer system to
send requests in a web protocol via the Internet to a server
computer system on which the web application is executing.
It is also common for automatic user agents to interact with
web applications in web protocols in the same fashion.

While many web applications are suitable for execution in
the cloud, it often requires significant expertise and effort in
order to install, execute, and manage a web application in the
cloud. For example, an administrator typically should iden-
tify the software components that a web application needs in
order to execute, and what versions of those software com-
ponents are acceptable. In addition, the administrator typi-
cally should obtain, install, and appropriately configure each
such software component, as well as the application itself.
Where this high level of expertise and effort has been invested
in order to get a web application running on a particular
hypervisor and in a particular provider’s cloud, a similarly
high level of expertise and effort usually should be subse-
quently invested to execute the web application instead or in
addition on a different hypervisor and/or in a different par-
ticular provider’s cloud. Also, it can be difficult to obtain

10

15

20

25

30

35

40

45

50

55

60

65

2

useful information about how the application is performing
and otherwise behaving when executing in the cloud.

Accordingly, software and/or hardware facilities for facili-
tating the execution of web applications in the cloud have
been introduced, and are known as Platform-as-a-Service
(PaaS) offerings. PaaS offerings typically facilitate deploy-
ment of applications without the cost and complexity of buy-
ing and managing the underlying hardware and software and
provisioning hosting capabilities, providing the facilities
required to support the complete life cycle of building and
delivering web application and service entirely available
from the Internet. Typically, these facilities operate as one or
more virtual machines (VMs) running on top of a hypervisor
in a host server.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be understood more fully from the
detailed description given below and from the accompanying
drawings of various embodiments of the invention. The draw-
ings, however, should not be taken to limit the invention to the
specific embodiments, but are for explanation and under-
standing only.

FIG. 1 is a block diagram of a network architecture in
which embodiments of the invention may operate;

FIG. 2 is a block diagram of a PaaS system architecture
according to an embodiment of the invention;

FIG. 3 is a block diagram of a communication infrastruc-
ture between a server orchestration system and a node accord-
ing to embodiments of the invention;

FIG. 4 is a block diagram depicting a multi-tenant PaaS
system having a resource control module at the broker layer
that implements automatic scaling of application resources
according to an embodiment of the invention;

FIG. 5 is a flow diagram illustrating a method for increas-
ing the scale of an application in a multi-tenant PaaS system
according to an embodiment of the invention;

FIG. 6 is a flow diagram illustrating a method for decreas-
ing the scale of an application in a multi-tenant PaaS system
according to an embodiment of the invention; and

FIG. 7 illustrates a block diagram of one embodiment of a
computer system.

DETAILED DESCRIPTION

Embodiments of the invention provide for scaling of appli-
cation resources in a multi-tenant Platform-as-a-Service
(PaaS) environment in a cloud computing system. A method
of embodiments of the invention includes monitoring a load
measurement of containers associated with an application
executed on virtual machines (VMs) in a multi-tenant PaaS
system, comparing the load measurement with a criteria, and
when the load measurement exceeds the criteria, causing
resources to be added to execute functionality of the applica-
tion in the VMs of the multi-tenant PaaS system.

In the following description, numerous details are set forth.
It will be apparent, however, to one skilled in the art, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and devices
are shown in block diagram form, rather than in detail, in
order to avoid obscuring the present invention.

Some portions of the detailed descriptions which follow
are presented in terms of algorithms and symbolic represen-
tations of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
effectively convey the substance of their work to others

US 9,405,593 B2

3

skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such

as “sending”, “receiving”, “attaching”, “forwarding”, “cach-
ing”, “executing”, “applying”, “identifying”, “configuring”,
“establishing”, “determining”, “pinging”, “comparing”,

“adding”, or the like, refer to the action and processes of a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s registers
and memories into other data similarly represented as physi-
cal quantities within the computer system memories or reg-
isters or other such information storage, transmission or dis-
play devices.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or it may com-
prise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a machine read-
able storage medium, such as, but not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards, or any type of media suitable for storing
electronic instructions, each coupled to a computer system
bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these systems will appear as set forth in the descrip-
tion below. In addition, the present invention is not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of the invention as
described herein.

The present invention may be provided as a computer
program product, or software, that may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer system (or other elec-
tronic devices) to perform a process according to the present
invention. A machine-readable medium includes any mecha-
nism for storing or transmitting information in a form read-
ableby amachine (e.g., a computer). For example, a machine-
readable (e.g., computer-readable) medium includes a
machine (e.g., a computer) readable storage medium (e.g.,
read only memory (“ROM”), random access memory
(“RAM”), magnetic disk storage media, optical storage
media, flash memory devices, etc.), etc.

Embodiments of the invention provide a mechanism for
automatic scaling of application resources in a multi-tenant

10

20

25

30

40

45

55

65

4

PaaS environment in a cloud computing system. Embodi-
ments of the invention implement automatic scaling in multi-
tenant PaaS system to detect and add additional resources
automatically as an application’s load demand increases or
decreases. In current multi-tenant PaaS system, an applica-
tion may utilize several cartridges, which are run in multiple
containers spread out over multiple VMs in the multi-tenant
PaaS system. In some embodiments, a load balancer is built
into the multi-tenant PaaS system for each application as one
of the containers. The load balancer container points to and
monitors the other containers in the application that are han-
dling the load, and uses metrics to determine when to add or
remove containers. The metrics are based on the overall load
of the containers, instead of monitoring individual load of
individual containers of the application. The load balancing
container also implements additional protections to prevent
“thrashing” (adding and removing gears too quickly) by ana-
lyzing metrics over, for example, the course of a day (rather
than every few minutes).

FIG. 1 is a block diagram of a network architecture 100 in
which embodiments of the invention may operate. The net-
work architecture 100 includes a cloud 130 managed by a
cloud provider system 104. The cloud provider system 104
provides VMs, such as VMs 111,112, 121, and 122 hosted in
cloud 130. Each VM is hosted on a physical machine, such as
host 1110 through host N 120, configured as part of the cloud
130. In some embodiments, the host machines 110, 120 are
often located in a data center. For example, VMs 111 and 112
are hosted on physical machine 110 in cloud 130 provided by
cloud provider 104. Users can interact with applications
executing on the cloud-based VMs 111, 112, 121, 122 using
client computer systems, such as clients 160, 170 and 180, via
corresponding web browser applications 161, 171 and 181.

Clients 160, 170 and 180 are connected to hosts 110, 120
and the cloud provider system 104 via a network 102, which
may be a private network (e.g., a local area network (LAN), a
wide area network (WAN), intranet, or other similar private
networks) or a public network (e.g., the Internet). Each client
160, 170, 180 may be a mobile device, a PDA, a laptop, a
desktop computer, or any other computing device. Each host
110, 120 may be a server computer system, a desktop com-
puter or any other computing device. The cloud provider
system 104 may include one or more machines such as server
computers, desktop computers, etc.

In one embodiment, the cloud provider system 104 is
coupled to a cloud controller 108 via the network 102. The
cloud controller 108 may reside on one or more machines
(e.g., server computers, desktop computers, etc.) and may
manage the execution of applications in the cloud 130. In
some embodiments, cloud controller 108 receives commands
from PaaS provider controller 140. Based on these com-
mands, the cloud controller 108 provides data (e.g., such as
pre-generated images) associated with different applications
to the cloud provider system 104. In some embodiments, the
data may be provided to the cloud provider 104 and stored in
an image repository 106, in an image repository (not shown)
located on each host 110, 120, or in an image repository (not
shown) located on each VM 111, 112, 121, 122.

Upon receiving a command identifying specific data (e.g.,
application data and files used to initialize an application on
the cloud), the cloud provider 104 retrieves the corresponding
data from the image repository 106, creates an instance of it,
and loads it to the host 110, 120 to run on top of a hypervisor
(not shown) asa VM 111, 112, 121, 122 or withina VM 111,
112, 121, 122. In addition, a command may identify specific
data to be executed on one or more of the VMs 111, 112, 121,
122. The command may be received from the cloud controller

US 9,405,593 B2

5

108, from a PaaS Provider Controller 140, or a user (e.g., a
system administrator) via a console computer or a client
machine. The image repository 106 may be local or remote
and may represent a single data structure or multiple data
structures (databases, repositories, files, etc.) residing on one
or more mass storage devices, such as magnetic or optical
storage based disks, solid-state drives (SSDs) or hard drives.

In one embodiment, PaaS provider controller 140 includes
aresource control module 145 configured to enable automatic
scaling in a multi-tenant PaaS system implemented in cloud
130. The resource control module 145 may implement load
balancing components in VMs 111, 112, 121, 122, where the
load balancing components implement automatic scaling for
each application, or portions of each application, hosted by
the multi-tenant PaaS system. In one embodiment, the load
balancing components monitor load (e.g., requests) at the
applications, or portions of the applications, in order to deter-
mine whether additional functional components should be
added to the PaaS system or removed from the PaaS system.
The PaaS provider controller 140 can interact with cloud
provider system 104 to cause capacity of the PaaS system to
be increased or decreased accordingly.

While various embodiments are described in terms of the
environment described above, those skilled in the art will
appreciate that the facility may be implemented in a variety of
other environments including a single, monolithic computer
system, as well as various other combinations of computer
systems or similar devices connected in various ways. For
example, the data from the image repository 106 may run
directly on a physical host 110, 120 instead of being instan-
tiated on a VM 111, 112, 121, 122.

FIG. 2 is a block diagram of a PaaS system architecture
200. The PaaS architecture 200 allows users to launch soft-
ware applications in a cloud computing environment, such as
cloud computing environment provided in network architec-
ture 100 described with respect to FIG. 1. The PaaS system
architecture 200, in one embodiment, includes a client layer
210, a broker layer 220, and a node layer 230.

In one embodiment, the client layer 210 resides on a client
machine, such as a workstation of a software developer, and
provides an interface to a user of the client machine to a
broker layer 220 of the PaaS system 200. For example, the
broker layer 220 may facilitate the creation and deployment
on the cloud (via node layer 230) of software applications
being developed by an end user at client layer 210.

In one embodiment, the client layer 210 includes a source
code management system 212, sometimes referred to as
“SCM” or revision control system. One example of such an
SCM or revision control system is Git, available as open
source software. Git, and other such distributed SCM sys-
tems, usually include a working directory for making
changes, and a local software repository for storing the
changes. The packaged software application can then be
“pushed” from the local Git repository to a remote Git reposi-
tory. From the remote repository, the code may be edited by
others with access, or the application may be executed by a
machine. Other SCM systems work in a similar manner.

The client layer 210, in one embodiment, also includes a set
of command tools 214 that a user can utilize to create, launch,
and manage applications. In one embodiment, the command
tools 214 can be downloaded and installed on the user’s client
machine, and can be accessed viaa command line interface or
a graphical user interface, or some other type of interface. In
one embodiment, the command tools 214 expose an applica-
tion programming interface (“API”) of the broker layer 220
and perform other applications management tasks in an auto-

10

15

20

25

30

35

40

45

50

55

60

65

6

mated fashion using other interfaces, as will be described in
more detail further below in accordance with some embodi-
ments.

In one embodiment, the broker layer 220 acts as middle-
ware between the client layer 210 and the node layer 230. The
node layer 230 includes the nodes 232a-c¢ on which software
applications 235a-c are provisioned and executed. In one
embodiment, each node 232a-c is a VM provisioned by an
Infrastructure as a Service (IaaS) provider, such as Amazon™
Web Services. In other embodiments, the nodes 232a-¢ may
be physical machines or VMs residing on a single physical
machine. In one embodiment, the broker layer 220 is imple-
mented on one or more machines, such as server computers,
desktop computers, etc. In some embodiments, the broker
layer 220 may be implemented on one or more machines
separate from machines implementing each of the client layer
210 and the node layer 230, or may implemented together
with the client layer 210 and/or the node layer 230 on one or
more machines, or some combination of the above.

In one embodiment, the broker layer 220 includes a broker
222 that coordinates requests from the client layer 210 with
actions to be performed at the node layer 230. One such
request is new application creation. In one embodiment, when
a user, using the command tools 214 at client layer 210,
requests the creation of a new application 235a-c, or some
other action to manage the application 235a-c, the broker 222
first authenticates the user using an authentication service
224.In one embodiment, the authentication service may com-
prise custom authentication methods, or standard protocols
such as SAML, Oauth, etc. Once the user has been authenti-
cated and allowed access to the system by authentication
service 224, the broker 222 uses a server orchestration system
226 to collect information and configuration information
about the nodes 232a-c.

In one embodiment, the broker 222 uses the Marionette
Collective™ (“MCollective™”) framework available from
Puppet Labs™ as the server orchestration system 226, but
other server orchestration systems may also be used. The
server orchestration system 226, in one embodiment, func-
tions to coordinate server-client interaction between multiple
(sometimes a large number of) servers. In one embodiment,
the servers being orchestrated are nodes 232a-¢, which are
acting as application servers and web servers.

For example, if the broker 222 wanted to shut down all
applications 235a-c on all even numbered nodes out of 100,
000 nodes, the broker 222 would only need to provide one
command to the server orchestration system 226. Then, the
server orchestration system 226 would generate and distrib-
ute a message to all nodes 232a-c to shut down all applica-
tions 235a-c if the node 2324a-cis even, using a messaging and
queuing system. Thus, in one embodiment, the broker 222
manages the business logic and model representing the nodes
232a-c and the applications 235a-c residing on the nodes, and
acts as a controller that generates the actions requested by
users via an API of the client tools 214. The server orchestra-
tion system 226 then takes the actions generated by the broker
222 and orchestrates their execution on the many nodes
232a-c managed by the system.

In one embodiment, the information collected about the
nodes 232a-c can be stored in a data store 228. In one embodi-
ment, the data store 228 can be a locally-hosted database or
file store, or it can be a cloud based storage service provided
by a Software-as-a-Service (SaaS) provider, such as Ama-
zon™ S3™ (Simple Storage Service). The broker 222 uses
the information about the nodes 232a-c and their applications
235a-c to model the application hosting service and to main-
tain records about the nodes. In one embodiment, data of a

US 9,405,593 B2

7

node 232a-c is stored in the form of a JavaScript Object
Notation (JSON) blob or string that maintains key-value pairs
to associate a unique identifier, a hostname, a list of applica-
tions, and other such attributes with the node.

In embodiments of the invention, the PaaS system archi-
tecture 200 of FIG. 2 is a multi-tenant PaaS environment. In a
multi-tenant PaaS environment, each node 232a-c¢ runs mul-
tiple applications 235a-c that may be owned or managed by
different users and/or organizations. As such, a first custom-
er’s deployed applications 235a-c may co-exist with any
other customer’s deployed applications on the same node 232
(VM) that is hosting the first customer’s deployed applica-
tions 235a-c. In some embodiments, portions of an applica-
tion are run on multiple different nodes 232a-c. For example,
as shown in FIG. 2, components of application 1 2354 are run
in both node 2324 and node 2325. Similarly, application 2
2355 is run in node 2324a and node 232¢, while application 3
235¢ is run in node 2325 and node 232c¢.

In addition, each node also maintains a cartridge library
237. The cartridge library 237 maintains multiple software
components (referred to herein as cartridges) that may be
utilized by applications 235a-c deployed on node 232a-c. A
cartridge can represent a form of support software providing
the functionality needed to run an application 235a-c. In one
embodiment, the cartridges are maintained that support lan-
guages such as JBoss™ PHP, Ruby, Python, Perl, and so on.
In addition, cartridges may be provided that support data-
bases, such as MySQL™, PostgreSQL™, Mongo™, and oth-
ers. Cartridges may also be available that support the build
and continuous integration environments, such as a Jenkins
cartridge. Lastly, cartridges may be provided to support man-
agement capabilities, such as PHPmyadmin, RockMongo™,
10gen-mms-agent, cron scheduler, and HAProxy, for
example. Adding an instance of a cartridge from cartridge
library 237 to an application 235a-c¢ provides a capability for
the application 235a-c without the customer owning the
application having to administer or update the included fea-
ture.

The deployment of multiple applications 235a-c of mul-
tiple customers on a single node 232a-c (VM) is a cost-
efficient solution for PaaS providers. However, deploying a
multi-tenant PaaS solution raises a variety of concerns,
including, for example, how to efficiently control capacity
and utilization of the nodes 232a-c in the PaaS system.
Embodiments of the invention provide a mechanism to auto-
matically scale resources in a multi-tenant PaaS system when
load limits associated with an application 235a-c are reached
or when resources of the application are being under-utilized
with respect to load on the application 235a-c. Server orches-
tration system 226 may implement one or more load balanc-
ing components 240 per application 235a-c to provide auto-
matic scaling of application processing components (e.g.,
cartridges) based on the load placed on the application 235a-
c. One embodiment of the interaction between the server
orchestration system 226 and a node 232a-c to implement
automatic scaling for application resources in a multi-tenant
PaaS system is now described in more detail with reference to
FIG. 3.

FIG. 3 is ablock diagram depicting a communication infra-
structure 300 between a server orchestration system 226 and
a plurality of nodes 232 according to embodiments of the
invention. In one embodiment, server orchestration system
226 and nodes 232 are the same as their counterparts
described with respect to FIG. 2. In one embodiment, each
node 232 is implemented as a VM and has an operating
system 315 that can execute applications 305 using the car-
tridge library 320 that are resident on the nodes 232. In one

10

15

20

25

30

35

40

45

50

55

60

65

8

embodiment, applications 305 are the same as applications
235a-c¢ described with respect to FIG. 2.

Each node 232 also includes a server orchestration system
agent 310 configured to track and collect information about
the node 232 and to perform actions on the node 232. Thus, in
one embodiment, using MCollective™ as the server orches-
tration system 226, the server orchestration system agent 310
can act as a MCollective™ server. The server orchestration
system 226 would then act as the MCollective™ client that
can send requests, queries, and commands to the MCollec-
tive™ server on node 232.

As previously mentioned, cartridges provide the underly-
ing support software that implements the functionality of
applications 305. In one embodiment, an application 305 may
utilize one or more cartridge instances 330 that are run in one
or more resource-constrained containers 325 on nodes 232.
Cartridge library 320 provides an OS 315-based location,
outside of all application containers 325, that acts as a source
for cartridge instantiations 330 that provide functionality for
an application 305. An application 305 may use more than
one cartridge instance 330 as part of providing functionality
for the application 305. One example of this is a JavaEE
application that uses a JBoss™ AS7 cartridge with a support-
ing MySQL™ database provided by a MySQL™ cartridge.
Each cartridge instance may include a software repository
that provides the particular functionality of the cartridge
instance 330.

A container 325 is a resource-constrained process space on
the node 232 to execute functionality of an application. In
some embodiments, a container 325 is established by the
node 232 with resource boundaries, including a limit and/or
designation of the amount of memory, amount of storage, and
security types and/or labels to be applied to any functions
executed by the container 325. In one embodiment, contain-
ers 325 may be established using the Linux Containers (LXC)
virtualization method. In further embodiments, containers
may also be established using cgroups, SELinux™, and ker-
nel namespaces, to name a few examples.

In some embodiments, a container 325 is also known as a
gear. In some embodiments, cartridges instances 330 for an
application 305 may execute in containers 325 dispersed over
more than one node 232, as shown with application 2 305
illustrated in FIG. 3. In other embodiments, cartridge
instances 330 for an application 305 may run in one or more
containers 325 on the same node 232, as shown with appli-
cation 1 in FIG. 3.

In one embodiment, the server orchestration system broker
226 includes a resource control module 350 that manages
capacity and utilization of nodes 232 in the multi-tenant PaaS
system. The resource control module 350 may also enable
automatic scaling of resources on a per-application basis in
the multi-tenant PaaS system by implementing one or more
load balancing containers 335 for each application in the
multi-tenant PaaS system. In some embodiments, such as for
a high-scale or high-redundancy application, the application
305 implements more than one load balancer container 335 to
direct work requests for the application 305.

In one embodiment, a load balancing container 335
includes a load balancing cartridge 330 that implements the
functionality of a load balancer. One example load balancing
cartridge 330 is a HAProxy cartridge. One skilled in the art
will appreciate that other load balancing cartridges 330
implementing different load balancing functionality may also
be utilized by embodiments of the invention. In yet other
embodiments, a load balancing cartridge 330 may be
executed in other containers 325 associated with an applica-
tion that are not solely used for load balancing purposes.

US 9,405,593 B2

9

In one embodiment, the load balancing container 335 for
an application 305 receives a workload request (e.g., front-
end network traffic request, back-end database request) and
distributes this request to another container 325 of the appli-
cation 305 to achieve optimal resource utilization, maximized
throughput, minimized response time, and/or reduced over-
load. In the case of a network traffic request, such as an HTTP
or Transmission Control Protocol (TCP) request, the load
balancer container 335 receives the request from the end user
through node 232 in a reverse proxy set-up. In the case of a
back-end database request, the load balancer container 335
receives the request from a container 325 of the application
305 running a database cartridge instance 330.

In embodiments of the invention, a load balancer container
335 and its associated load balancer cartridges 330 monitor
overall load demand for the associated application 305. Based
on the monitored overall load demand for the application 305,
the load balancer container 335 can interact with the resource
control module 350 to add or remove containers 325 for an
application 305.

With respect to increasing the scale of resources for an
application based on load demand, a load balancer container
335 monitors overall load on all of the containers 325 that it
monitors. The load balancer container 335 may request a new
container 325 to be added to an application when the total
overall load on the monitored containers 325 (e.g., summa-
tion of current load on all monitored containers 325) reaches
a threshold level. Each container 325 monitored by a load
balancer container 335 is configured with a maximum
amount of work requests that the container 325 may handle.
In one embodiment, resources control module 350 provides
the load balancer container 335 with the workload/demand
capacity for each container 325 that the load balancer con-
tainer 335 monitors when the monitored container 325 is
initialized. This determination of the work requests that a
container may handle can be based on a collection of infor-
mation included, but not limited to, the cartridges installed in
that container, the resource limitations of the container and
the historical behaviors of the overall application.

In one embodiment, instead of monitoring individual load
on each container 325, the load balancer container 335 moni-
tors an overall load on all of the monitored containers 325.
The load balancer container 335 may determine a maximum
overall load for all of its monitored containers by summing
each of the maximum loads of each monitored container 325
together. For example, if the load balancer container 335
monitors 8§ containers 325 each with a maximum load of 10
connections, then the overall maximum load to be monitored
by the load balancer container 335 is 80 connections. In one
embodiment, the load balancer container 335 is configured
with a threshold level, such as a percentage of total maximum
load (e.g., 85%) or a discrete amount of load (e.g., 70 con-
nections), that triggers the load balancer container 335 to
request additional resources (e.g., containers 325 with asso-
ciated cartridges 330) for the application 305.

With respect to decreasing the scale of resources for an
application based on load demand, the load balancer con-
tainer 325 also monitors the overall load on its monitored
container 325. In some embodiments, the load balancing
container 325 may implement additional conditions to be met
before a request to remove application resources (e.g., con-
tainers 325 with respective cartridges 330) is made. These
additional conditions may be implemented to avoid “thrash-
ing” of the application. “Thrashing” refers to a condition
where resources (e.g., containers 335 and cartridges 330) are
frequently added and removed as the overall load demand on
the application oscillates and triggers the scaling thresholds.

10

15

20

25

30

35

40

45

50

55

60

65

10

In such a situation, the constant adding and removal of
resources is inefficient for the application due to the initial
overhead in initializing or removing these resources.

In one embodiment, thrashing protection is built into the
load balancer container 335 for purposes of removing
resources from the application. The thrashing protection may
include multiple conditions that should be satisfied before a
request to remove an application resource is initiated. In one
example, the thrashing protections may include allowing a
request to remove application resources when overall load
has dropped below 50% overall capacity for the last 4 checks
in a row, with no new resources being added in the past 5
minutes, and without a resource (e.g., container 325) being
removed in the last 3 minutes. If all the above conditions are
met, then a request to remove resources my proceed. One
skilled in the art will appreciate that a variety of thrashing
protection combinations may be implemented so that an
application is not in a constant state of adding and removing
containers 325.

In some embodiments, the load balancing container 335 is
configured to be liberal when adding resources to an applica-
tion 305, while being conservative when removing resources
from an application 305. This may provide an improved per-
formance experience for an end user of the multi-tenant PaaS
system at the same time as allowing capacity to drop off when
indicated for cost-effective pricing.

FIG. 4 is a block diagram depicting a multi-tenant PaaS
system 400 having a resource control module 350 at the
broker layer that implements automatic scaling of application
resources according to an embodiment of the invention. In
one embodiment, the resource control module 350 is the same
as resource control module 350 described with respect to FIG.
3. The resource control module 350 maintains configuration
data regarding the load capacities for applications, and their
associated threshold levels, for each node 232 in a PaaS
system. Each node 232 executes one or more containers 325.
Nodes 232 and containers 325 correspond to their counter-
parts described in FIG. 3.

Nodes 232 are further grouped into districts 410, 420.
Although only two districts 410, 420 are illustrated, one
skilled in the art will appreciate that server orchestration
system 226 may manage multiple (more than two) districts
within a PaaS system. In one embodiment, a district 410, 420
is a collection of nodes 232 that is given a dedicated set of
Internet Protocol (IP) addresses, ports, and security labels
(such as SELinux™ security labels) to share. As such, two
nodes 232 in the same district 410, 420 should not have any
containers 325 that conflict with each other in terms of IP
address, ports, or security labels.

Each district 410, 420 has a maximum total number of
containers 325 that can be provisioned in the district 410, 420.
For instance, if a district 410, 420 limits a finite resource for
the application that must be unique across the district, such as
the numbers of ports that can be utilized, that resource, in turn,
limits the total number of applications in the district. As such,
in this embodiment, the district 410, 420 is limited to 6,000
containers 325 in order to avoid conflicts between containers
325 in a district 410, 420.

In embodiments of the invention, a load balancing con-
tainer 335 may balance load for an application across con-
tainers 325 for an application executed in different nodes 232
and districts 410, 420. In some embodiments, such as in the
case of high-scale application and/or highly-available appli-
cation, multiple load balancer containers 335 may be distrib-
uted across different nodes 232 and districts 410, 420 to
reduce the possibility of losing load balancer containers 335
due to failure of one or more nodes 232.

US 9,405,593 B2

11

FIG. 5 is a flow diagram illustrating a method 500 for
increasing the scale of an application in a multi-tenant PaaS
system according to an embodiment of the invention. Method
500 may be performed by processing logic that may comprise
hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software (such as instructions run on
a processing device), firmware, or a combination thereof. In
one embodiment, method 500 is performed by aload balancer
container executing on a computing device, such as load
balancer container 335 described with respect to FIGS. 3 and
4.

Method 500 begins at block 510 where load capacity data
is received for each container of an application that is load
balanced by the load balancer container. In one embodiment,
the load capacity is a maximum amount of work requests that
a particular container can maintain and/or process at a single
time. In some embodiments, the work requests include net-
work traffic requests (such as HTTP requests and/or TCP
requests) or include database requests (such as MySQL
requests or NoSQL requests). In one embodiment, an admin-
istrator configures the load capacity at a resource control
module of a server orchestration system and passes this infor-
mation to the load balancer container.

At block 520, the overall load capacity of the load-bal-
anced application containers is monitored. In one embodi-
ment, the overall load capacity is the sum of all current load
measurement for each monitored container. In particular, the
load balancer container monitors overall load capacity
instead of monitoring individual load at each load-balanced
container. In some embodiments, the load balancer container
monitors application containers that may be distributed
across multiple nodes and/or districts of the multi-tenant
PaaS system.

Then, at decision block 530, the load balancer container
determines whether the monitored overall load exceeds a
maximum threshold load amount. In one embodiment, the
determination at decision block 530 is made at predetermined
time intervals. In other embodiments, the determination is a
continuous assessment made anytime overall load changes.
In one embodiment, the maximum threshold value may be a
percentage of the overall maximum load of all of the moni-
tored containers. In some embodiments, an administrator of a
server orchestration system configures the maximum thresh-
old value.

If the overall load does not exceed the threshold load
amount at decision block 530, then method 500 returns to
block 520 to continue monitoring the overall load capacity of
the application containers. On the other hand, if the overall
load does exceed the threshold load amount, then method 500
proceeds to block 540 to interact with a server orchestration
system in order to add resources to the application. In one
embodiment, the resources to add include additional contain-
ers and cartridges to execute functionality of the application.
Lastly, at block 550, the application content is synchronized
to the added resources, and the added resources are then
initialized.

FIG. 6 is a flow diagram illustrating a method 600 for
decreasing the scale of an application in a multi-tenant PaaS
system according to an embodiment of the invention. Method
600 may be performed by processing logic that may comprise
hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software (such as instructions run on
a processing device), firmware, or a combination thereof. In
one embodiment, method 600 is performed by a load balanc-
ing container executing on a computing device, such as load
balancer container 335 described with respect to FIGS. 3 and
4.

10

15

20

25

30

35

40

45

50

55

60

65

12

Method 600 begins at block 610 where load capacity data
is received for each container that is load balanced for an
application by the load balancer container. In one embodi-
ment, the load capacity is a maximum amount of work
requests that a particular container can maintain and/or pro-
cess at a single time. In some embodiments, the work requests
include network traffic requests (such as HTTP requests and/
or TCP requests) or include database requests (such as
MySQL requests or NoSQL requests). In one embodiment,
an administrator configures the load capacity at a resource
control module of a server orchestration system and passes
this information to the load balancer container.

At block 620, the overall load capacity of the load-bal-
anced application containers is monitored. In particular, the
load balancer container monitors overall load capacity of all
load balanced containers, instead of monitoring individual
load at each load-balanced container. In some embodiments,
the load balancer container monitors application containers
that may be distributed across multiple nodes and/or districts
of'the multi-tenant PaaS system. Then, at decision block 630,
the load balancer container determines whether the moni-
tored overall load falls below a minimum threshold load
amount. In one embodiment, the determination at decision
block 630 is made at predetermined time intervals. In other
embodiments, the determination is a continuous assessment
made anytime overall load changes.

In one embodiment, the minimum threshold value may be
a percentage of the overall maximum load of all of the moni-
tored containers. In some embodiments, an administrator at a
server orchestration system configures the minimum thresh-
old value. In one embodiment, the minimum threshold load
amount is different than a maximum threshold load amount
used to determine when resources should be added. In other
embodiments, the threshold load amounts (maximum and
minimum) are the same.

If'the overall load does not fall below the minimum thresh-
old load amount at decision block 630, then method 600
returns to block 620 to continue monitoring the overall load
capacity of the application containers. On the other hand, if
the overall load does fall below the threshold load amount,
then method 600 proceeds to decision block 640 where a
further determination is made as to whether one or more
thrashing protections have been satisfied.

In one embodiment, the thrashing protections are addi-
tional conditions that should be met in terms of load analysis
in order to prevent the application from being in a constant
state of adding and removing resources based on overall load
fluctuations at the application. In one embodiment, the
thrashing protections include a number of contiguous previ-
ous checks that the overall load fell below the threshold, a
time interval that resources have not been added to the appli-
cation, and/or a time interval that resources have not been
removed from the application, and so on.

If the thrashing protections are not satisfied at decision
block 640, then method 600 returns to block 620 to continue
monitoring the overall load capacity of the application con-
tainers. On the other hand, if the thrashing protections are
satisfied, then method 600 proceeds to block 650 to interact
with a server orchestration system to remove resources from
the application. In one embodiment, the resources to remove
from the application include existing containers and car-
tridges of the application. In some embodiments, the contain-
ers being removed remain active until their current executing
processes had finished. In such a case, no new work requests
are assigned to these containers.

FIG. 7 illustrates a diagrammatic representation of a
machine in the example form of a computer system 700

US 9,405,593 B2

13

within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of aserver oraclient
machine in client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, switch or bridge, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

The computer system 700 includes a processing device
(processor) 702, a main memory 704 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM) or Rambus
DRAM (RDRAM), etc.), a static memory 706 (e.g., flash
memory, static random access memory (SRAM), etc.), and a
data storage device 718, which communicate with each other
via a bus 708.

Processor 702 represents one or more general-purpose pro-
cessing devices such as a microprocessor, central processing
unit, or the like. More particularly, the processor 702 may be
a complex instruction set computing (CISC) microprocessor,
reduced instruction set computing (RISC) microprocessor,
very long instruction word (VLIW) microprocessor, or a pro-
cessor implementing other instruction sets or processors
implementing a combination of instruction sets. The proces-
sor 702 may also be one or more special-purpose processing
devices such as an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA), a digital
signal processor (DSP), network processor, or the like. The
processor 702 is configured to execute instructions 726 for
performing the operations and steps discussed herein, illus-
trated in FIG. 7 by depicting instructions 726 within proces-
sor 702.

The computer system 700 may further include a network
interface device 722. The computer system 700 also may
include a video display unit 710 (e.g., a liquid crystal display
(LCD), a cathode ray tube (CRT), or a touchscreen), an alpha-
numeric input device 712 (e.g., a keyboard), a cursor control
device 714 (e.g., amouse), and a signal generation device 720
(e.g., a speaker).

The data storage device 718 may include a machine-read-
able storage medium 724 (also known as a computer-readable
storage medium) on which is stored software 726 (e.g., one or
more sets of instructions, software, etc.) embodying any one
or more of the methodologies or functions described herein.
The software 726 may also reside, completely or at least
partially, within the main memory 704 (e.g., instructions 726)
and/or within the processor 702 (e.g., processing logic 726)
during execution thereof by the computer system 700, the
main memory 704 and the processor 702 also constituting
machine-readable storage media. The software 726 may fur-
ther be transmitted or received over a network 774 via the
network interface device 722.

In one embodiment, the software 726 include instructions
for a resource control module 350, which may correspond to
resource control module 350 of FIG. 3, and/or a software
library containing methods that call the resource control mod-

10

15

20

25

30

35

40

45

50

55

60

65

14

ule for automatic scaling in a multi-tenant PaaS environment
in a cloud computing system. While the machine-readable
storage medium 724 is shown in an example embodiment to
be a single medium, the term “machine-readable storage
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more sets of instructions. The term “machine-readable stor-
age medium” shall also be taken to include any medium that
is capable of storing, encoding or carrying a set of instructions
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
invention. The term “machine-readable storage medium”
shall accordingly be taken to include, but not be limited to,
solid-state memories, optical media, and magnetic media.

Inthe foregoing description, numerous details are set forth.
It will be apparent, however, to one of ordinary skill in the art
having the benefit of this disclosure, that the present invention
may be practiced without these specific details. In some
instances, well-known structures and devices are shown in
block diagram form, rather than in detail, in order to avoid
obscuring the present invention.

Some portions of the detailed description have been pre-
sented in terms of algorithms and symbolic representations of
operations on data bits within a computer memory. These
algorithmic descriptions and representations are the means
used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “segmenting”, “analyzing”, “determining”, “enabling”,
“identifying,” “modifying” or the like, refer to the actions and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (e.g., electronic) quantities within the com-
puter system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such information
storage, transmission or display devices.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or it may com-
prise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read-
able storage medium, such as, but not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards, or any type of media suitable for storing
electronic instructions.

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,

US 9,405,593 B2

15

structure, or characteristic described in connection with the
embodiment is included in at least one embodiment. Thus, the
appearances of the phrase “in one embodiment” or “in an
embodiment” in various places throughout this specification
are not necessarily all referring to the same embodiment. In
addition, the term “or” is intended to mean an inclusive “or”
rather than an exclusive “or.”

It is to be understood that the above description is intended
to be illustrative, and not restrictive. Many other embodi-
ments will be apparent to those of skill in the art upon reading
and understanding the above description. The scope of the
invention should, therefore, be determined with reference to
the appended claims, along with the full scope of equivalents
to which such claims are entitled.

What is claimed is:

1. A method, comprising:

monitoring, by a processing device, a load measurement of

containers associated with an application executed on
virtual machines (VMs) in a multi-tenant Platform-as-
a-Service (PaaS) system;

comparing, by the processing device, the load measure-

ment with a criteria; and

when the load measurement exceeds the criteria, causing

resources to be added to execute functionality of the

application in the VMs of the multi-tenant PaaS system,

wherein the load measurement and the criteria comprise

at least one of:

the load measurement corresponding to an amount of
work requests in a first container of the containers and
the criteria comprises a maximum amount of work
requests that the first container can handle;

the load measurement corresponding to an overall load
of the containers and the criteria comprises a maxi-
mum load of the containers;

the load measurement corresponding to a load at the first
container and the criteria comprises a plurality of
thrash prevention criteria that are satisfied before
removing the application; or

the load measurement corresponding to the load at the
first container and the criteria comprises a first criteria
for adding resources liberally and a second criteria for
conservatively removing resources.

2. The method of claim 1, wherein each of the containers
comprise a resource-constrained process space of the VMs to
execute a component of the application, wherein the applica-
tion is one of a plurality of applications executed by the VMs
and having different owners.

3. The method of claim 1, wherein the work requests com-
prise at least one of a network traffic request or a database
request, and wherein the maximum amount of work requests
is in view of at least one of cartridges installed in the first
container, resource limitations on the first container, or his-
torical behaviors of the application.

4. The method of claim 1, wherein the maximum load of
the containers is a summation of a maximum total load capac-
ity configured for each of the containers.

5. The method of claim 1, wherein the plurality of thrashing
prevention criteria comprise at least one of a number of con-
tiguous previous checks that the load measurement at the first
container fell below a load threshold at the first container, a
time interval that resources have not been added to the appli-
cation, or a time interval that resources have not been
removed from the application.

6. The method of claim 1, wherein the first criteria and the
second criteria are in view of a policy for cost-effective pric-
ing for the multi-tenant PaaS system.

10

15

20

25

30

35

40

45

50

55

60

65

16

7. The method of claim 1, wherein causing the resources to
be added further comprises requesting a resource control
module of the multi-tenant PaaS system to provision one or
more containers and associated cartridges for the application
in one or more of the VMs of the multi-tenant PaaS system.

8. The method of claim 7, wherein a resource control
module operating on a broker layer of the multi-tenant PaaS
system, and wherein the multi-tenant PaaS system is imple-
mented in a cloud computing system.

9. The method of claim 1, wherein the application executes
in one or more of the VMs distributed across one or more
districts of the multi-tenant PaaS system, wherein the one or
more districts comprise a collection of the VMs that is given
a dedicated set of Internet Protocol (IP) addresses, ports, and
security labels to share when executing the containers within
the VMs of the district.

10. A system, comprising:

a memory;

aprocessing device communicably coupled to the memory,

the processing device to:
monitor a load measurement of containers associated
with an application executed on virtual machines
(VMs) in a multi-tenant Platform-as-a-Service (PaaS)
system,
compare the load measurement with a criteria; and
when the load measurement exceeds the criteria, cause
resources to be added to execute functionality of the
application in the VMs of the multi-tenant PaaS sys-
tem, wherein the load measurement and the criteria
comprise at least one of:
the load measurement corresponding to an amount of
work requests in a first container of the containers
and the criteria comprises a maximum amount of
work requests that the first container can handle;
the load measurement corresponding to an overall
load of the containers and the criteria comprises a
maximum load of the containers;
the load measurement corresponding to a load at the
first container and the criteria comprises a plurality
of thrash prevention criteria that are satisfied before
removing the application; or
the load measurement corresponding to the load at the
first container and the criteria comprises a first cri-
teria for adding resources liberally and a second
criteria for conservatively removing resources.

11. The system of claim 10, wherein the containers com-
prise a resource-constrained process space of each VM to
execute a component of the application, wherein the applica-
tion is one of a plurality of applications executed in the by the
VMs and having different owners.

12. The system of claim 10, wherein the work requests
comprise at least one of a network traffic request or a database
request, and wherein the maximum amount of work requests
is in view of at least one of cartridges installed in the first
container, resource limitations on the first container, or his-
torical behaviors of the application.

13. The system of claim 10, wherein the maximum load of
the containers is a summation of a maximum total load capac-
ity configured for each of the containers.

14. The system of claim 10, wherein the plurality of thrash-
ing prevention criteria comprise at least one of a number of
contiguous previous checks that the load measurement at the
first container fell below aload threshold at the first container,
a time interval that resources have not been added to the
application, or a time interval that resources have not been
removed from the application.

US 9,405,593 B2

17

15. The system of claim 10, wherein the first criteria and
the second criteria are in view of a policy for cost-effective
pricing for the multi-tenant PaaS system.

16. A non-transitory machine-readable storage medium
including instructions that, when accessed by a processing
device, cause the processing device to:

monitor, by the processing device, an overall load measure-

ment of containers associated with an application
executed on virtual machines (VMs) in a multi-tenant
Platform-as-a-Service (PaaS) system, wherein the over-
all load measurement is a summation of individual cur-
rent loads at the containers;

compare, by the processing device, the overall load mea-

surement to an overall load threshold for the containers;
and

when the overall load measurement exceeds the overall

load threshold, automatically causing resources to be
added to execute functionality of the application in the
VMs of the multi-tenant PaaS system.

17. The non-transitory machine-readable storage medium

of claim 16, wherein each of the containers in the VMs com-

10

15

20

18

prise a resource-constrained process space of each VM to
execute a component of the application, wherein the applica-
tion is one of a plurality of applications executed in the by the
VMs and having different owners.

18. The non-transitory machine-readable storage medium
of claim 16, wherein the overall load threshold comprises a
percentage of a maximum overall load capacity of the moni-
tored containers.

19. The non-transitory machine-readable storage medium
of'claim 16, wherein causing resources to be added to execute
functionality of the application further comprises requesting
a resource control module of the multi-tenant PaaS system to
add one or more containers and associated cartridges to the
VMs executing the application in the multi-tenant PaasS sys-
tem.

20. The non-transitory machine-readable storage medium
of'claim 19, wherein the resource control module operates on
a broker layer of the multi-tenant PaaS system that includes
the VMs, and wherein the multi-tenant PaaS system is imple-
mented in a cloud computing system.

#* #* #* #* #*

